
1 Propagation d’une onde

Exercice 1 : Propagation dans un câble (QCM 2016)

Une seule impulsion est initialement envoyée dans le câble : l’autre impulsion observée
correspond au retour de l’impulsion après qu’elle ait été réfléchie par l’extrémité du câble.

On sait qu’une onde se réfléchissant contre une extrémité de son milieu de propagation
change de signe : la réponse est donc soit la figure (a) soit la figure (c).

Or, en figure c), on observe que l’onde rélféchie passe en x = ℓ/2 plus tard qu’en x = 0, ce
qui est impossible car elle se propage dans le sens des x décroissants. Donc la réponse est (a).

On peut comprendre quantitativement la figure (a) : l’onde est émise à t = 0 µs, prend 0,5 µs
pour parcourir la moitié du câble, atteint l’extrémité après une durée supplémentaire de 0,5 µs
et prend enfin 0,5 µs de plus pour revenir en ℓ/2 : au total, 1,5 µs se sont alors écoulées.

x = 0 x = ℓ/2 x = ℓ

0 µs

2 µs 1,5 µs

0,5 µs

Figure 1 – Parcours de l’onde le long du câble. On a dessiné le retour décalé par rapport à
l’aller pour rendre le diagramme lisible, mais les deux parcours sont en réalité confondus.

Exercice 2 : Bang sonique (QCM 2016)

La simplicité apparente de cette question peut interpeler : elle est sûrement plus dure
qu’il n’y paraît. Soit c la célérité du son dans l’air. Faisons une petite analogie avec les ondes à
la surface de l’eau. Si un bateau va suffisamment vite, on observe qu’un cône de vagues se
forme dans son sillage (figure 2).

Cela vient du fait qu’à chaque instant, l’objet en mouvement crée une onde. Cette onde part
de sa position, et, puisque la célérité de l’onde est la même dans toutes les directions, cette
onde est sphérique (pour un bateau, la surface de l’eau est en 2D donc l’onde est circulaire).
Donc en chaque point, l’objet en mouvement crée une onde circulaire de célérité c (figure 3(a)).
Puisque l’avion est plus rapide que les ondes sonores, le cercle (qui s’agrandit donc) restera
derrière lui. Les fronts d’onde vont donc, collectivement, créer un cône.

Quand les ondes qui s’accumulent sont des ondes sonores, l’accumulation donne lieu à un
bruit très fort : c’est le « bang sonique ».

On va calculer l’angle θ que fait le cône avec l’horizontale. Supposons que l’avion avance à
la vitesse v pendant une durée ∆t (figure 3(b)).

On voit que sin(θ) =
c∆t

v∆t
=

c

v
, c’est-à-dire θ = arcsin

( c

v

)
≈ 0,841 rad.
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Physicité IPhO : Ondes, interférences et diffraction (corrections)

Figure 2 – Les ondes émises par un bateau en mouvement peuvent former un cône derrière
lui.

(a) (b) θ

v∆t

c∆t

(c)
P

O
θ
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Figure 3 – (a) Ondes circulaires émises par un objet allant plus vite que la célérité des ondes.
(b) Croissance d’une onde et mouvement de la source pendant ∆t. (c) Progression de l’avion
entre l’instant t = 0 où il passe à la verticale au dessus de l’observateur et l’instant t où celui-ci
entend le bang.

Soient h la hauteur de l’avion, O la position de l’avion à t = 0 et P la position de l’observateur

(figure 3(c)). On voit que tan(θ) =
h

vt
, donc t =

h

v tan(θ)
≈ 2.2s. La bonne réponse est la réponse

(a).

2 Effet Doppler

Exercice 3 : Preuve de la formule de l’effet Doppler
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1. Entre deux maxima du signal s’écoule une période, soit l’inverse de la fréquence. Ainsi :

t2 − t1 =
1

fém

t4 − t3 =
1

freç

2. Soit D la distance entre l’émetteur et le récepteur à l’instant t1. Le maximum est émis à
t1, l’onde doit donc parcourir D avant d’arriver au récepteur, et elle le fait en en un temps
t3 − t1. Donc :

t3 − t1 =
D

c

Le maximum suivant est émis à l’instant t2. En t2, l’émetteur s’est rapproché : la distance
qui le sépare du récepteur est alors D − v(t2 − t1).
L’onde doit donc, pour arriver au récepteur, parcourir D − v(t2 − t1) = D − v/fém d’après 1.
Donc :

t4 − t2 =
D − v/fém

c

3.
t4 − t2 =

D

c
− v

fémc

t4 − t2 = t3 − t1 −
v

fémc

t4 − t3 = t2 − t1 −
v

fémc

1

freç
=

1

fém
− v

fémc

fém
freç

= 1− v

c

On retrouve bien la formule vue en cours.

Exercice 4 : Ouragan (QCM 2017)

L’effet du vent est d’accélérer les ondes allant dans le sens du vent, qui ont alors une
célérité c+ v où v = 50 m s−1 est la vitesse du vent, et de ralentir les ondes allant dans l’autre
sens, qui ont alors une vitesse c− v. Mais cela ne modifie pas la fréquence des ondes puisque
l’émetteur et le récepteur ne sont pas en mouvement relatif : on s’attend à ce que la réponse
soit la (a).

On peut le voir intuitivement de la manière suivante. Si un bus part du terminus toutes les
trois minutes, un bus passera par votre arrêt toutes les trois minutes, peu importe la vitesse
du bus. Mais on peut aussi reprendre les choses proprement, pas à pas, pour se convaincre du
résultat. On se place dans le référentiel du vent, c’est-à-dire le référentiel où l’air est immobile
(figure 4). L’intérêt est que dans ce référentiel, on sait que la célérité des ondes est c.

On va prendre le formalisme de l’exercice précédent. On appelle t1 et t2 les temps d’émission
respectifs de deux maxima successifs par la sirène. On fixe t1 = 0 pour simplifier les calculs.
On appelle t3 et t4 les temps respectifs de réception de ces deux maxima par l’observateur.
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(a) •
Sirène

•
ObservateurAir : v

Son : c+ v

(b) •
Sirène

v •
Observateur
v

Son : c

x
0 d

Figure 4 – (a) Référentiel terrestre : le vent y a une vitesse v, la sirène et l’observateur y sont
immobiles. (b) Référentiel du vent : l’air y est immobile, la sirène et l’observateur y ont une
vitesse −v. Les positions sur l’axe des abscisses sont celles des objets à l’instant t1 = 0.

Soit d = 1 km la distance entre l’observateur et la sirène, f = 1100 Hz la fréquence émise, f ′ la
fréquence perçue par l’observateur. Comme dans l’exercice précédent, on a :

t2 = 1/f

t4 − t3 = 1/f ′

Le premier maximum est émis à t1 = 0 à la position x = 0. Son abscisse au cours du temps
est x(t) = ct (dans le référentiel du vent). L’abscisse de l’observateur dans ce référentiel est
x′(t) = d− vt (car le vent va de la sirène vers l’observateur, disons donc de la gauche vers la
droite, donc dans le référentiel du vent, l’observateur va de la droite vers la gauche). t3 vérifie

x(t3) = x′(t3), donc t3 =
d

v + c
.

En t2, un deuxième maximum est émis par la sirène, alors en position −vt2, et se déplace
à la vitesse c. Son abscisse vaut donc x(t) = c(t − t2) − vt2. L’abscisse de l’observateur vaut

toujours x′(t) = d− vt. t4 vérifie x′(t4) = x(t4). On en déduit donc t4 = t2 +
d

v + c
. On trouve alors

t4 − t3 = t2, soit
f = f ′.

La bonne réponse est bien la (a).

Exercice 5 : Tours de state

Traitons d’abord la question du nombre de fois où l’intervalle est balayé par seconde.
L’intervalle est balayé quand la vitesse le long de l’axe source-observateur passe de −v à +v
(avec v la vitesse de la source). Autrement dit, l’intervalle est balayé en un demi tour du cercle
(voir figure 5). Si la source va deux fois plus vite, ce demi-tour est fait deux fois plus vite, donc
non pas une fois par seconde mais deux fois par seconde.

La fréquence perçue est d’autant plus différente de la fréquence émise que la vitesse de
la source est importante (rappelez-vous, si v ≪ c, ∆f/f ≈ v/c). Donc si v double, la longueur
de l’intervalle de fréquences balayé est plus grande que celle de l’intervalle initial de 20Hz.
Réponse (d).
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(b)
•
S

v

• O

(a)
•Sv

• O

Figure 5 – (a) La source S lorsqu’elle s’éloigne le plus vite de l’observateur O. (b) La source S
lorsqu’elle se rapproche le plus vite de l’observateur O.

3 Interférences

Exercice 6 : Modification des interférences (QCM 2019)

Les deux hauts parleurs produisent chacun une onde, qui interfèrent dans l’espace 1 et
forment des zones d’intensité sonore élevée, les ventres, et des zones d’intensité sonore faible,
les nœuds. On ne connait pas exactement la figure d’interférence, mais on peut raisonner avec
des principes généraux.

Examinons chaque réponse possible une par une.
Modifier la fréquence f du signal modifierait la longueur d’onde λ du son émis, puisque

celle-ci est fixée par la relation de dispersion λ = c/f , où c est la célérité de l’onde. Comme
modifier la longueur d’onde change la valeur de l’ordre d’interférence p = δ/λ en un point
donné, cela modifie aussi la position des ventres et des nœuds, la réponse n’est donc pas (a).

Déplacer l’un des hauts parleurs modifie la différence de marche δ entre deux rayons
atteignant un point donné, et modifie donc également l’ordre d’interférence p = δ/λ, soit la
position des ventres et des nœuds. La réponse n’est donc pas (b).

Modifier la tension du signal modifie l’amplitude des ondes émises par chaque haut-parleur,
mais ne modifie pas l’ordre d’interférence. La position des ventres et des nœuds est donc
inchangée : la bonne réponse est la réponse (c).

Finalement, remplacer l’air environnant par de l’hélium modifie la célérité du son c. Puisque
la longueur d’onde λ est déterminée par la relation de dispersion λ = c/f , modifier c modifie λ
et donc la position des ventres et des nœuds. La réponse n’est pas (d).

Exercice 7 : Problème de contraste (QCM 2025)

Une frange sombre est due à l’annulation de deux ondes d’amplitude égale se superposant
en opposition de phase. Si l’une des ondes a une amplitude différente de l’autre, l’annulation
ne pourra pas se faire exactement : les franges sombres ne seront pas exactement dénuées
de lumière.

Ainsi, quand on réduit l’intensité de la lumière sortant d’une des fentes d’Young en
l’opacifiant partiellement, on fait interférer deux ondes d’amplitudes différentes, qui produiront
donc des franges sombres plus claires que sans opacification. On dit que le contraste et réduit,
et la réponse est donc (c).

Quant aux ondes brillantes, elles s’assombrissent simplement puisque moins de luminosité
totale sort des fentes lorsqu’une d’entre elles est opacifiée.

1. Notons que l’énoncé justifie que les ondes produites soient cohérentes entre elles en précisant que les deux
hauts parleurs sont alimentés par le même générateur.
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Exercice 8 : Fentes d’Young avec deux couleurs

Soient λ1 = 560 nm et λ2 la longueur d’onde inconnue. Par synthèse additive, ces longueurs
d’ondes interfèrent indépendamment l’une de l’autre : on peut considérer la figure d’interfé-
rence produitent par λ2 et calculer la position de ses franges brillantes et sombres puis faire
la même chose pour λ2 séparément (figure 6).

Par définition de l’ordre d’interférence, la frange brillante d’ordre 10 pour λ1 a une différence
de marche δ = 10λ1. Attention, le compte des franges brillantes commence à 0.

Ce qu’on appelle la « frange sombre d’ordre 9 » est la neuvième frange sombre en partant
de δ = 0. Pour λ2, elle correspond donc à une différence de marche δ = (9− 0,5)λ2.

Comme les deux franges coïncident, elles ont la même différence de marche : 10λ1 = 8,5λ2,
donc λ2 = 659 nm.

(a)

(a)

δ = 0 δ

Figure 6 – (a) Franges d’interférences à λ1. (b) Franges d’interférences à λ2.

4 Ondes stationnaires

Exercice 9 : Stereo (QCM 2023)

Il y a deux façons de procéder : soit en considérant l’exercice comme un problème
d’interférences quelconque, soit en procédant par élimination. Commençons par la première
méthode, qui demande donc de calculer la différence de marche.

La différence de marche au point M d’abscisse x vaut :

δ(x) = O1M−O2M ;

avec O1 et O2 les points correspondant respectivement aux haut-parleurs de gauche et de
droite (voir figure 7). Ainsi,

δ(x) =
(
x+

L

2

)
−
(
− x+

L

2

)
;

soit

δ(x) = 2x.

Les minima d’amplitude correspondent à des nœuds, donc à des interférences destructives.
Ainsi, en xm, on doit avoir :

δ(xm) =
(
m+

1

2

)
λ pour m ∈ Z ;

donc

xm =
(2m+ 1)λ

4
.

La bonne réponse est donc la réponse (a).
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L’autre manière d’arriver à la réponse, c’était par élimination : en effet, on sait que pour
des ondes stationnaires, deux nœuds successifs sont séparés d’une demi longueur d’onde. La
réponse (a) était la seule à vérifier cette condition.

(Ox)•
O1

•
O2

•
M

x

Figure 7 – Définition des points O1, O2 et M.

Exercice 10 : Flute

1. Lorsque le trou est bouché, on retrouve la flute étudiée dans le cours : les longueurs
d’ondes λ de ses modes propres vérifient L = mλ/2 + λ/4 pour m ∈ N.
Lorsque le trou est débouché, on force la présence d’un ventre le long de la flute, à la
position du trou x. On a donc effectivement réduit la longueur de la flute à x, de sorte
que les longueurs d’ondes de ses modes propres vérifient x = mλ/2+λ/4 pour m ∈ N (voir
figure 8).

(a)

m = 0 m = 1 m = 2

(b)

m = 0 m = 1 m = 2

Figure 8 – (a) Modes propres lorsque le trou est bouché. (b) Modes propres lorsque le trou est
débouché.

2. Le mode propre qui détermine principalement la fréquence du son émis est le fondamen-
tal, dont la fréquence f0 est la plus faible des fréquences propres. Cela correspond à la
longueur d’onde λ0 la plus grande des longueurs d’onde des modes propres, ou encore
à m = 0. Quand le trou est bouché, on trouve donc L = λ0/4, et quand il est débouché
x = λ′

0/4.
Par la relation de dispersion f = c/λ, on trouve les fréquences correspondantes f0 = c/4L
et f ′

0 = c/4x. Comme x < L, on a f ′
0 > f0 : le son émis est plus aigu lorsque le trou est

débouché.

5 Battements

Exercice 11 : Fréquence des battements

1. Il s’agit d’une manipulation purement mathématique. Son seul intérêt est de se familiariser
avec les formules trigonométriques d’addition, mais on pourra en retenir une leçon plus
générale lors de la résolution d’un exercice : il faut toujours garder en tête son but.

7/10



Physicité IPhO : Ondes, interférences et diffraction (corrections)

Ici, on sait qu’on veut transformer la somme sin (2πf1t) + sin (2πf2t) en produit : on a donc
envie d’utiliser deux fois la formule d’addition pour sin (x+ y), une fois avec x et y tels
que x+ y = 2πf1 et une fois avec x′ et y′ tels que x′ + y′ = 2πf2t. Mais comment choisir x,
y, x′ et y′ ?
L’astuce est de se rappeler qu’on ne veut garder d’un terme produit en cos× sin à la fin,
alors que chaque formule d’addition en donne deux : on veut donc que certains de ces
termes se compensent. On peut arriver à ce but en choisissant x′ = x et y′ = −y, de telle
sorte que sin (x+ y)+sin (x− y) = sin (x) cos (y)+cos (x) sin (y)+sin (x) cos (y)− cos (x) sin (y) =
2 sin (x) cos (y).
Il reste à trouver x et y tels que x+ y = 2πf1t et x− y = 2πf2t. C’est un système linéaire à
deux équations pour deux inconnues, dont la solution est x = π(f1 + f2)t et y = π(f1 − f2)t.
On conclut donc : u1(1) + u2(t) = 2A sin (π(f1 + f2)t) cos (π(f1 − f2)t).

−2A

0

2A

t

u
1
(t
)
+
u
2
(t
)

Figure 9 – Battements lorsque la différence des fréquences est bien plus faible que chacune
des deux fréquences originales : |f1 − f2| ≪ f1.

2. Les battements prennent la forme d’une porteuse modulée par une enveloppe (figure
9), d’amplitude A(t) = 2A|cos (π(f1 − f2)t)| (tracée en figure 10). Si les deux signaux qui se
superposent sont des ondes sonores, par exemple, la hauteur entendue correspond à la
fréquence de la porteuse, (f1 + f2)/2, et l’intensité sonore change dans le temps entre
des maxima, quand A(t) = 2A, et des minima, quand A(t) = 0. La période Tbattements des
battements est donc la durée entre deux maxima d’intensité successifs, soit Tbattements =
1/|f1 − f2| et une fréquence correspondante fbattements = 1/Tbattements = |f1 − f2|.

0 Tbattements
0

2A

t

A
(t
)

Figure 10 – Amplitude perçue des battements au cours du temps.

Exercice 12 : Chef d’orchestre (QCM 2015)

La fréquence des battements dues à deux ondes de fréquences respectives f1 et f2 vaut
|f2 − f1|. L’énoncé donne f1 = 439 Hz et f2 = 443 Hz, d’où |f2 − f1| = 4 Hz : la bonne réponse est
donc (d).
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Exercice 13 : Train (QCM 2016)

La fréquence des battements entre deux ondes de fréquences f1 et f2 vaut |f2 − f1|, et celle
de la porteuse est la moyenne entre f1 et f2, c’est-à-dire (f1 + f2)/2.

Ici, une des ondes est l’onde émise par l’émetteur, donc f1 = f , et l’autre onde, réfléchie
par le train, voit sa fréquence modifiée par effet Doppler (voir figure 11).

Le changement de fréquence Doppler résulte de deux processus successifs : d’abord,
l’onde émise est « observée » par le train, qui agit comme un récepteur mobile et perçoit donc
une fréquence f ′ = f(1 + v/c), puis l’onde est réémise par le train, qui agit donc comme un
émetteur mobile en envoyant la fréquence f ′. Cette fréquence est mesurée par le récepteur
fixe comme valant f2 = f ′/(1− v/c). On applique l’approximation habituelle 1/(1− v/c) ≈ 1+ v/c,
ce qui donne f2 = f ′(1 + v/c) = f(1 + v/c)2.

On utilise alors l’approximation (1 + ε)n ≈ 1 + nε lorsque ε ≪ 1 en posant n = 2 et ε = v/c,
pour obtenir finalement f2 ≈ f + 2fv/c.

La fréquence des battements est donc |f2 − f1| ≈ 2fv/c et la fréquence de la porteuse vaut
(f1 + f2)/2 ≈ f + fv/c > f . La bonne réponse est ainsi la (a).

Émetteur-récepteurTrain

v

Figure 11 – Le train en mouvement reflète les ondes sonores émises par l’émetteur-récepteur.

6 Diffraction

Exercice 14 : Diffraction subaquatique? (QCM 2017)

Appelons f la fréquence du laser. La longueur d’onde correspondante vaut donc λ = f/c, où
c est la célérité de la lumière dans le milieu où se propage le faisceau. Par définition de l’indice
optique, c = c0/n, où c est la vitesse de la lumière dans le vide et n l’indice optique du milieu.

On peut caractériser la largeur de la figure de diffraction par exemple en mesurant la
position angulaire θ1 de la première tache sombre. On sait que θ1 ≈ λ/e, où e est la largeur de
la fente.

En mettant toutes ces formules ensemble, on trouve θ1 ≈ fn/c0e. Comme neau ≈ 1,33 > nair ≈
1 et que tous les autres paramètres sont fixés, on a (θ1)eau > (θ1)air : la figure de diffraction est
donc plus large dans l’eau que dans l’air. La bonne réponse est (c).

Exercice 15 : Diffraction par un objet inconnu (QCM 2021)

Une figure de diffraction respecte les symétries de l’objet diffractant. Ici, on voit que la
figure a les mêmes symétries d’un hexagone : la réponse est donc (c).

Par exemple, la figure est inchangée si on la tourne d’un sixième de tour, comme un
hexagone, mais ce n’est le cas ni d’un triangle, ni d’une étoile, ni d’un octogone.

Exercice 16 : Distance entre fente et écran (QCM 2024)
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L’image donnée dans l’énoncé montre la figure de diffraction due au passage de la lumière
du laser dans la fente, dont on notera e = 1,0 mm la largeur.

On sait caractériser la taille d’une figure de diffraction : en effet, l’angle de la première
frange sombre par rapport à la direction d’incidence du laser vaut θ1 ≈ λ/e en radians, où
λ = λrouge ≈ 650 nm. Ce qu’il reste à faire, c’est traduire cet angle en distances sur l’écran :
alors, on pourra exploiter la figure. Cette conversion fera intervenir la distance D entre la fente
et l’écran : en comparant nos prédictions à la figure observée, on pourra donc en déduire D.

Laser

e

D

θ1
y1

Figure 12 – Schéma de la diffraction d’un laser par une fente.

Sur la figure 12, on voit que la distance entre le centre de la tâche lumineuse centrale et le
centre de la première tâche sombre vaut y1 = D tan (θ1). En utilisant l’approximation des petits
angles, on trouve y1 ≈ Dλ/e. Avec une règle, on peut facilement mesurer 2y1, la distance entre
les deux tâches sombres proches du centre (mesurer directement y1 est moins simple car il
n’est pas évident de placer le centre de la tâche lumineuse centrale). On mesure grossièrement
2y1 ≈ 1 cm, d’où on déduit D ≈ (2y1)e/2λ ≈ 8 m. La bonne réponse est donc la (c).

Préparation aux olympiades – version 2025-26 – contributeurs : Victor Lequin, Mathurin Rouan
Source de la figure 2 : Shutterstock.com/AlexKol Photography
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